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Figure 1. Our method, given a single reference image or text prompt, can generate intricate 3D shapes with high fidelity in just 25 seconds.
Drawing inspiration from the typical workflow of the craftsman, we start by creating a coarse shape using a 3D native DiT model. We
then enhance the surface details using either an automatic global geometry refiner or, more intriguingly, an interactive geometry refiner that
allows for users to edit. For more visually compelling results, please refer to the supplementary video.

Abstract

We present a novel generative 3D modeling system,
coined CraftsMan3D, which can generate high-fidelity 3D
geometries with highly varied shapes, detailed surfaces,
and, notably, allows for refining the geometry in an inter-
active manner. Despite the significant advancements in 3D
generation, existing methods still struggle with lengthy op-
timization processes, self-occlusion, irregular mesh topolo-
gies, and difficulties in accommodating user editing, con-
sequently impeding their widespread adoption and imple-
mentation in 3D modeling softwares. Our work is inspired
by the craftsman, who usually roughs out the holistic figure
of the work first and elaborates the surface details subse-
quently. Specifically, we first introduce a robust data pre-
processing pipeline that utilizes visibility check and winding
mumber to maximize the use of existing 3D data. Leverag-

ing this data, we employ a 3D-native DiT model that di-
rectly models the distribution of 3D data in latent space,
generating coarse geometries in seconds. Subsequently, a
normal-based geometry refiner enhances local surface de-
tails, which can be applied automatically or interactively
with user input. Extensive experiments demonstrate that our
method achieves high efficacy in producing superior quality
3D meshes compared to existing methods.

1. Introduction

The rapid development of industries such as video gaming,
augmented reality, and film production has led to a surge in
demand for automatic 3D asset creation. However, existing
methods still struggle to produce results that are ready to
use.



3D generative methods can be broadly categorized into
three types: i) Score-Distillation Sampling (SDS) based
methods [5, 24, 44] typically distill priors in pretrained 2D
diffusion models for optimizing a 3D representation, even-
tually producing 3D assets. However, these methods often
suffer from time-consuming processing, unstable optimiza-
tion, and multi-face geometries. ii) Multi-view (MV) based
methods propose generating multi-view consistent images
as intermediate representations, from which the final 3D
can be reconstructed [20, 28, 30]. While these methods
significantly improve generation efficiency and robustness,
the resulting 3D assets tend to have artifacts and struggle
to generate assets of complex geometric structures. iii) 3D
native generation methods [18, 37, 56, 63] attempt to di-
rectly model the probalistic distribution of 3D assets via
training on 3D assets. However, due to the limited 3D data
and high-dimensional 3D representation, existing 3D gen-
erative models can not produce high-fidelity details. More
importantly, all of these methods do not support user editing
to improve the generated 3D interactively.

Challenges of scaling up native 3D generative models
largely due to the uniform requirement of training data. Un-
like the standardized structures of text and 2D images, 3D
assets are from various sources—procedural functions, 3D
modeling, or scanning, resulting in diverse mesh topologies
such as closed, open, double-sided, non-manifold that re-
quire careful handling to maintain geometric integrity, mak-
ing uniform dataset creation difficult. Point-E [37] pioneers
a large-scale model trained on millions of 3D assets to gen-
erate 3D point clouds from text prompts. While point clouds
reduce data acquisition costs, they lack topological detail,
limiting their real-world utility. Implicit distance fields,
like signed distance fields (SDF), offer a better alternative
due to their continuous, watertight properties, allowing for
high-quality 3D mesh extraction. Consequently, existing
3D datasets often require preprocessing to convert meshes
into SDFs. Leveraging this, Shape-E [18] improves 3D gen-
eration quality, while recent models like CLAY [63] and Di-
rect3D [56] adopt advanced diffusion techniques. However,
none of these methods can generate high-fidelity geomet-
ric details and limitations in mesh-to-SDF conversions still
result in training difficulty.

To tackle problems mentioned above, we first propose an
efficient and robust mesh-to-SDF algorithm that maximizes
the utilization of existing 3D data [8, 9]. By integrating
visibility checks with winding number analysis, we signifi-
cantly enhance the success rate of the watertight conversion
and form a high-quality 3D dataset based on Objaverse [8].
Built on the 3D data, we present a two-stage generative 3D
native generation system, coined CraftsMan, which takes
as input single images as reference or text prompts and
generates high-fidelity 3D geometries featuring highly var-
ied shapes, regular mesh topologies, and detailed surfaces,

and, notably, allows for interactively refining the geometry.
Drawing inspiration from craftsmen, who typically begin by
shaping the overall form of their work before subsequently
refining the surface details, our system is comprised of two
stages: 1) a native 3D diffusion model, that is conditioned
on single image and directly generates coarse 3D geome-
tries; and 2) a robust generative geometry refiner that pro-
vides intricate details powered by Poisson Normal Blending
and Relative Laplacian Smoothing regularization.

In summary, our main contribution lies in three aspects:
• A robust and efficient data pre-processing pipeline that in-

tegrates visibility checks enhanced by the winding num-
ber and significantly improves the success rate of water-
tight mesh conversion.

• A simple yet effective 3D Native DiT model. Exten-
sive experiments demonstrate that our simple structure
achieves high efficacy in producing superior quality 3D
assets compared to existing methods.

• A novel normal-based interactive mesh refiner which can
produce highly enhanced geometries within just 20 sec-
onds and support interactive manipulation, enhancing the
generated coarse geometries to better align with the users’
envisioned designs.

2. Related work
In this section, we will first provide a brief review of the rel-
evant literature on 3D generation, followed by a discussion
of recent works focused on 3D native generative models.

2.1. 3D Generation using 2D Supervision
In recent years, generative models have achieved significant
success in producing high-fidelity and diverse 2D images,
and we have seen a surge of interest in lifting this powerful
2D prior to 3D generation. Most of these methods gener-
ate 3D contents, typically in the form of NeRF [35] or Tri-
plane [2] representations, which are turned into images by
a differentiable renderer. Then the multiview images can
be compared with either real-world dataset samples or im-
ages rendered from 3D models to train a generative model.
[3, 11, 38, 49] perform GAN-like [12] structure to synthe-
size 3D-aware images via adversarial training.

However, these methods are often trained on limited
views with specific categories, and therefore shows poor
generalization on unseen categories. [44] develop tech-
niques to distill 3D information from a large-scale pre-
trained 2D text-to-image diffusion models to optimize
3D representation, thus yielding 3D assets. Subsequent
works [5, 22–24, 50, 54] are proposed to further enhance
the quality of 3D generation. By leveraging existing pow-
erful 2D priors, these per-shape optimization methods take
dozens of minutes and require a huge computational cost.

Instead of performing a time-consuming optimization,
recent works [20, 26, 28, 30] attempt to generate multi-
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Figure 2. Compared to the SOTA reconstruction-based models,
our result produces accurate complex geometric structures, includ-
ing those that are self-occluded in the input images.

.

view images simultaneously and bring 3D-awareness by
finetuning the 2D diffusion models. The generated multi-
view images are then used to reconstruct a 3D shape us-
ing sparse view reconstruction algorithms or Large Recon-
struction Models (LRM). Although these methods achieve
high efficiency, the generated results are heavily dependent
on the quality of the 2D images. Indirect modeling of 3D
probability distributions is insufficient for faithfully recov-
ering geometric information. Self-occlusion, complex light-
ing conditions, and multi-view inconsistency are still chal-
lenging, usually result in degraded final generation quality,
which can be validate in Figure 2. In contrast, our approach
modeling the distribution of 3D data, enabling high-quality
mesh generation even with complex inputs.

2.2. 3D Native Generative Models
Unlike approaches that rely on 2D supervision, many works
adopt various 3D representations such as point clouds [19,
58, 65], meshes [29, 36], and implicit functions [6, 40, 52]
to train native 3D generative models. Building up on re-
cently advanced diffusion models [13], a series of works
began to conduct 3D diffusion models with the represen-
tation of point cloud [31, 65], meshes [29] and implicit
fields [7, 51, 59]. However, training these 3D generative
models directly on 3D data is quite challenging, due to
the high memory footprint and computational complexity.
To tackle these challenges, inspired by the success of la-
tent diffusion [48], recent studies [16, 64] first compress
3D shapes into compact latent space, and then perform dif-
fusion process in the latent space. For instance, [60] and
[61] propose a method to encode occupancy fields using a
set of either structured or unstructured latent vectors. Neu-
ral Wavelet [16] advocates a voxel grid structure contain-
ing wavelet coefficients of a Truncated Signed Distance
Function (TSDF). One-2-3-45++ [25] and XCube [47] fo-
cus on explicit dense grid volume. The most recent works,
Michelangelo [64] and CLAY [63], train a diffusion model
on latent set representations, and Direct3D [56] explores a
triplane representation to enhance training scalability. How-
ever, these works often suffer from lacking geometric de-
tails, over-smoothing surfaces, and unstable training pro-
cesses. Our work harnesses the feed-forward nature of 3D
diffusion models while enhancing its generalization capa-

Input Mesh Mesh2SDF Visibility Check Visibility Check +
Winding Number(Ours)

178s 3s 6s

low high

Figure 3. Error maps of different mesh-to-sdf methods. We sample
surface points from the processed meshes for each method and
show the differences compared to the ground truth mesh.

bility by leveraging the prior from pre-trained multi-view
2D diffusion as the condition. This approach significantly
facilitates zero-shot ability and robust generation.

3. Method
Our 3D generation framework mirrors the 3D artist’s work-
flow, which begins typically with the creation of a rough
geometry that is then refined in the subsequent stage. Fig-
ure 4 illustrates our generative 3D modeling workflow, that
is capable of producing high-quality, detailed 3D assets.

In this section, We begin by introducing our data pre-
processing (Sec.3.1), which significantly improves the suc-
cess rate of watertight conversion and maximizes the uti-
lization of existing 3D data. Following this, we train a
Variational Auto-Encoder (VAE) on the watertight meshes
to learn latent set-based representations[61] and output a
TSDF field. Next, we train a dedicated DiT-based denois-
ing network that operates on these learned latent represen-
tations, using the intermediate multi-view image as condi-
tioning (Sec.3.2). Finally, our framework features a normal
map-based geometry refinement scheme (Sec.3.3).

3.1. Data Preprocessing.
Standardizing the geometric data is essential for effectively
training a 3D generative model. Due to the significant
noise in the geometry and appearance, we first filter out
low-quality meshes, including those with point clouds, thin
structures, holes, and textureless surfaces to form our initial
subset. Ensuring that the mesh is watertight is also essen-
tial for extracting the SDF (Signed Distance Function) field
from the processed meshes as supervision [63] when train-
ing a Shape VAE [61, 64]. Although the dataset proposed in
[8, 9] claims to have nearly ten million objects, the vast ma-
jority of it is non-watertight, such as scanned point clouds
and planes, resulting in less than 1% of the data can be di-
rected used. Therefore, we propose an efficient and effec-
tive method for converting mesh into a watertight one.

Winding Number-Enhanced Watertight Conversion.
Dual Octree Graph Networks (DOGN) [53] proposed a
”mesh-to-SDF” approach, which requires a significant
amount of time. CLAY [63] introduced a ”visibility check”
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Figure 4. Overview of CraftsMan3D. We first using a multi-view diffusion model to generate a multi-view image from the input single
image or text prompt. The generated multi-view image is then fed into our Latent Set-based DiT model as conditioning to produce a coarse
mesh. Finally, a dedicated refinement module is employed to improve or edit the surface normals of the coarse geometry, enhancing with
intricate details. In particular, this refinement module features two key usages, namely the automatic global refinement and interactive
magic brush, that contribute to efficient and controllable 3D modeling of high-quality meshes.

method for remeshing, which maximizes positive volume
while faithfully preserving geometric features. However, as
shown in Figure 3, for the non-manifold objects with holes,
it is easy to encounter floaters inside the converted mesh.
To tackle these challenges, we enhance the visibility check
by incorporating the concept of the winding number [32],
which is an effective tool for determining whether points
are inside or outside a shape. When the input point cloud
has well-defined normals, the winding number can reliably
differentiate between the inside and outside in a global man-
ner. Specifically, we first randomly choose 50 cameras on a
sphere and use a dense grid with a resolution of 256 or 512
for visibility check. If the center of a grid cell is not visible
to all the cameras, we further check the winding number of
it. Once the value of the winding number indicator function
is greater than a threshold, which we set to 0.75 by default,
we treat that point as being inside the object. Thus, we can
get robust inside-outside test results. This approach statisti-
cally improves our watertight conversion success rate from
60% to 80% on [8]. Please refer to the supplementary for
more details.

3.2. Multi-view guided 3D generation model

3D Shape VAE. Following [64], we adopt a Perceiver-
based [17] shape VAE to encode the 3D shape into a set
of latent vectors S and then decode them to reconstruct the
neural field of the original 3D shape. Figure 5(a) shows
the network architecture. Specifically, for each 3D shape,
we first sample on the 3D surface to obtain a set of points
Pc ∈ RN×3, as well as a set of surface normal vectors
Pn ∈ RN×3 at these point positions. The encoder is trained
to map points Pc and Pn into a latent vector set Z, which
a decoder then translates into an implicit field representa-

tion. Notably, we replace the original occupancy field with
a TSDF field using a threshold of 1/256 for stable optimiza-
tion and better performance.

Multi-view Guided 3D Diffusion Model. Instead of di-
rectly using the input single image or text prompt as con-
ditioning, our DiT-based diffusion model is conditioned on
the multi-view (MV) images that capture the target 3D as-
set. During inference the pre-trained text-based [50] or
image-based [21, 30, 55] MV diffusion models are used to
generate the corresponding MV image from the input single
image or text prompt accordingly. MV images generated by
recent MV diffusion models offer richer geometric and con-
textual information compared to using a single image or text
alone. As a result, the multi-view conditioned DiT model
enables improved generation of various 3D shapes, particu-
larly on unobserved regions from the single input image.

With the latent set representation S of a shape and its
corresponding multi-view images ŷ, we now train a MV-
conditioned DiT model. To make image embeddings be
aware of the camera position, we follow the method [20]
to modulate the camera parameters π during the feature
extraction, by employing an adaptive layer normalization
(adaLN) [42]. Formally, the conditioned embeddings c can
be represented by:

c = φclip(ŷ,ModLN(π)) + φmlp(φdino−v2(ŷ,ModLN(π)))
(1)

where φclip and φdino−v2 are pretrained CLIP [46] and
DINO-v2 [1] and φmlp is a small MLP that aligns DINO
features with CLIP features. Then, we can learn the Multi-
view guided Latent Set Diffusion Model (LSDM) via:

LLSDM := EE(x),y,ϵ∼N (0,1),t

[
∥ϵ− ϵθ (St, t, c)∥22

]
, (2)
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Figure 5. The illustration of 3D generation. (a.) We first train a 3D
Variational Autoencoder (VAE) to compress 3D shape into a latent
space, which takes point clouds with normals as input and outputs
TSDF fields. (b.) With the learned latent space, we train a 3D
Latent Set DiT Model that using multi-view images as conditions.

where ϵθ is build on a DiT [41] model, t is time step and St

is a noisy version of S0. To reduce the number of param-
eters and computational cost, we employ adaLN-single [4]
in each DiT block.

3.3. Normal-based Geometry Refinement
To further enhance the coarse mesh, we propose to improve
the initial mesh using normal maps as an intermediate rep-
resentation. We first render the normal maps of coarse mesh
and then leverage normal-based diffusion to enhance the
rendered normals with intricate details. Subsequently, the
refined normals serve as supervision to optimize the mesh,
thus yielding a refined mesh with rich details. Moreover,
this process also can be performed in an interactive way.
Users can select the areas to be edited using a painting
brush, creating a binary mask that indicates the regions to be
updated. Please refer to the supplementary video for more
visual results.

Intermediate Normal Guidance Generation We adopt
ControlNet-Tile [62] that is finetuned on a normal
dataset [8, 15] to enhance the rendered normals with de-
tails. A pivotal challenge arises from the inconsistencies
observed in the normal images generated by diffusion mod-
els across different views. Recent advancements, as detailed
in [30, 50], address this issue by employing a cross-view
attention mechanism. Interestingly, we have observed that
the cross-view attention mechanism can be directly applied
to our task in a training-free manner. This is partially at-
tributable to the inherent constraints of the coarse normal
maps and the design of ControlNet-Tile, which hallucinates
new details without significantly altering the original input
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Figure 6. The illustration of surface normal-based geometry re-
finement. (a) The normal-adapted diffusion model is combined
with ControlNet-Tile to enhance a normal with intricate details.
(b) The automatic mesh refinement process via training-free cross-
view attention.

conditions. Formally, during the diffuse process, for the ith
view with a rendered normal map ni, we replace the K and
V in the original attention layer with:

K = WK
[
z0, · · · , zK

]
, V = WV

[
z0, · · · , zK

]
, (3)

Here, the key K and value V are globally shared for all
input views.

Shape Editing via Normal-based Optimization We ad-
vocate for direct vertex optimization through continuous
remeshing [39], which is favored for its computational ef-
ficiency and explicit control over the optimization process.
Given a mesh with vertices V and faces F , we optimize the
mesh details by directly manipulating the triangle vertices
and edges, with the supervision of the refined normal maps
n̂i. Specifically, in each optimization step, we render nor-
mal maps from the current mesh via differentiable render-
ing, denoted as Rn(V, F, πi). Then, we minimize the L1
differences between the rendered normals and the refined
normals via:

Lremeshing =
∑
i

∥n̂i −Rn(V, F, πi)∥11, (4)

whereRn denotes the differentiable normal rendering func-
tion and πi is the camera information of ith rendering cam-
era. In each step, an update operation is executed to update
the position for each vertex according to the gradient com-
puted in the loss backward process.

Poisson Normal Blending Diffusion models generate
normals maps by regarding them as a specific domain of im-
ages. We found that normal maps generated this way some-
times are inaccurate, which results in unstable optimization.
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Figure 7. Distance map with coarse normal. Normal maps en-
hanced by stable diffusion contain low-frequency changes from
original normal map(shown in red in (a)), which will result in
global distortion of input shapes. Applying Poisson Fusion elim-
inate global distortions, resulting in the preservation of global
shapes and the enhancement of high details(b).

Figure 7(a) shows the pixel-wise L2 distance between the
normal map rendered from coarse mesh and the normal map
enhanced by the normal stable diffusion, which shows sig-
nificant changes in the initial shape and leads to stretched
shape during the optimization. To address this, we try to
eliminate the influence of those low frequency changes and
only take use of the local details contained in the enhanced
normal map. We accomplish this by employing the efficient
and traditional Poisson Blending algorithm [43]:

nfused = Γ (n̂,Rn(V, F, π),m) . (5)

we denote Γ as the Poisson Blending algorithm,
Rn(V, F, π) and n̂ are the rendered normal map and en-
hanced normal map respectively. m denotes the mask ren-
dered from coarse mesh, which will be used to label the
target region to be fused.

Relative Laplacian Smoothing Previous methods [39]
often achieve stable optimization by introducing Laplace
regularization term. However, this term avoids undesirable
results by forcing each vertex close to the coordinate origin
in a local Laplace coordinate, which inevitably cause the
shrink of the shape. Fortunately, in our detail enhancement
task, our initial coarse mesh contains a good prior, thus we
do not need to constrain the smoothness by enforcing the
Laplace coordinate to zero, but punishing the change of the
Laplace coordinate comparing to the initial shape, which is
called relative Laplacian smoothing term. Given a coarse
shape with vertices x, we compute the initial Laplace co-
ordinate by V W

init = WinitVinit, here Vinit is the initial
vertex coordinate of coarse mesh, Winit is the correspond-
ing Laplacian matrix. Then in every optimization step, we
regularize the deformation process by

x← x+ λv(WV − V W
init), (6)

Table 1. Quantitative comparison with baseline methods on the
GSO dataset [10]. We follow [28, 55] and randomly choose 30
shapes from GSO for comparison. Each shape in aligned by con-
ducting an ICP register to calculate the metrics[33].

Type Method CD↓ IoU↑ Time↓

Recon.-based
Model

One-2-3-45 [26] 0.0629 0.4086 ˜45s
zero123 [27] 0.0339 0.5035 ˜10min
InstantMesh [57] 0.0187 0.6353 ˜10s

SDS-based
Model

Realfusion [33] 0.0819 0.2741 ˜90min
Magic123 [45] 0.0516 0.4528 ˜60min

3D
Generative

Model

Point-E [37] 0.0426 0.2875 ˜40s
Shap-E [18] 0.0436 0.3584 ˜10s
Michelangelo [64] 0.0404 0.4002 ˜3s
One2345++ [25] 0.0437 0.3386 ˜20s
Ours 0.0291 0.5347 ˜5s

Table 2. Quantitative comparison on subset which contained self-
occlusion in the input images. Our 3D generative model demon-
strated a significant performance.

Method CD↓ IoU↑

InstantMesh [57] 0.04909 0.50151
Ours 0.03943 0.53215

where xinit is the initial vertex position, λ is a smoothing
hyperparameter. Please refer to the [39] for more details.

4. Experiments

To validate the effectiveness of our proposed workflow, we
extensively evaluate our proposed framework using a rich
variety of inputs. We present the qualitative and quantita-
tive evaluation of our method as described in Section 4.2
and Section 3.3, as well as comparison results against other
baseline methods, showing the effectiveness and efficiency
compared to other generation methods. We also conduct
ablation studies to validate the effectiveness of each com-
ponent in our framework, as described in Section 4.4. More
intriguing visual results can be found in our accompanying
video and supplementary.

4.1. Implementation Details

We follow the same architecture as in [64] for our shape
auto-encoder, with the exception of the layer dedicated to
contrastive learning, and for our latent set diffusion model.
The shape auto-encoder is based on a perceiver-based trans-
former architecture with 185M parameters, while the la-
tent set diffusion model is based on a DiT, comprising 500
million parameters. We train the diffusion model on 32
A800 GPUs using ground truth multi-view images, which
share common approaches in related works in this area like
[14, 25], etc. Additional details, including dataset, training
settings can be found in our supplementary.
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Figure 8. Qualitative comparisons with baseline methods for the task of single-view generation.
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Figure 9. Qualitative comparisons with baseline methods for mesh
refinement. To better showcase the effects of our mesh refinement,
we performed a decimation operation on the input mesh.

4.2. Evaluation of Mesh Generation

In this evaluation, we focus on presenting the quality of our
3D generation model through a variety of results, and also
present quantitative data for reference. We compare our
model with several 3D generative models [18, 56, 64] and
the state-of-the-art large reconstruction model(LRM) [57].
Given that CLAY [63] is not publicly available and our re-
quest to obtain their results haven’t been responded, we only
present the visual results in supplementary.

As shown in Fig. 8, our 3D native diffusion model pro-
duces coarse geometry with regular topology, and the coarse
meshes are further enhanced with more intricate details.
On the contrary, the 3D native counterpart Shap-E tends
to produce noisy surfaces and incomplete shapes, while
Michelangelo produces over-smoothed geometries and also
suffers from shape ambiguity, like the second example in
Fig. 8. Although InstantMesh produces accurate geome-

tries, it can not handle complex geometry structures which
results in adhesive geometry and lacks geometric details,
take the phoenix in the first line for an example. Compared
with Direct3D, our method achieves better consistency be-
tween the input image and the generated mesh.

Following the prior works [28, 30, 57], we also employ
the Google Scanned Object dataset [10]—a rich collection
of common everyday objects—to evaluate the performance
of our 3D Diffusion Model in generating 3D models from
single images. We adopt widely-used Chamfer Distances
(CD) and Volume Intersection over Union(IoU) as the met-
rics. For each object in the evaluation set, we use the front
view image as input. To align the input for a fair compari-
son, we first generate multi-view images from input image
using existing multi-view diffusion models [30, 55]. The
quantitative evaluation of the quality of our image-to-3D
generation is shown in Table 1. Our method surpasses all
the generation based methods and displays comparable re-
sults in a shorter time compared to the reconstruction based
method InstantMesh [57]. We notice that the distribution
of the GSO dataset is kind of monotonous,lacking mesh
with complex structures and self occlusion, which is exactly
where our model excels. To fully demonstrate the superior-
ity of our method, we randomly choose a subset from the
Objaverse dataset for further evaluation. As shown in Ta-
ble 2, in this dataset with more complex geometries, the per-
formance of our method is superior to InstantMesh. We also
report the time consumption of different methods. In con-
trast to the SDS-based methods that usually require hours
to optimize, our method obtains the resulting mesh in just a
few seconds.



Table 3. Quantitative comparison for mesh refinement

Method CLIP similarity ↑ Time ↓

Fantasia3D [5] 0.2567 ˜15min
Latent-NeRF [34] 0.2725 ˜1h
Ours 0.2821 ˜20s

Table 4. Ablation study of multi-view guided 3D diffusion model

Method CD↓ IoU↑

w/o MV condition 0.0317 0.5892
w/o Camera Injection 0.0249 0.6561
ours-Cost Volume 0.0223 0.6583
ours 0.0188 0.7059

4.3. Evaluation of Mesh Refinement
To further assess the efficiency of our mesh refinement tech-
nique, we compare our method with recent approaches,
specifically Fantasia3D [5] and Latent-NeRF [34]. To re-
duce the influence of the initial mesh and validate the strong
detail enhancement power of our refinement, we reduce the
number of face of initial shapes to 500. For the compari-
son with Fantasia3D, we employ the coarse mesh for ini-
tialization and only conduct the geometry modeling stage.
In the case of Latent-NeRF, we use the input mesh as Sketch
Shapes and train the NeRF in Sketch-Shape mode. All com-
parative experiments were conducted under their default
settings. The visual results presented in Figure 9 demon-
strate that our mesh refinement technique outperforms pre-
vious methods, producing not only clear and coherent out-
comes but also effectively integrating high-quality details
without compromising the overall structural integrity of the
original mesh. Additionally, we provide a quantitative eval-
uation of our mesh refinement. We selected 20 objects from
the Objaverse dataset and employed the same text descrip-
tions as guidance. Table 3 presents the CLIP [46] simi-
larity scores and the corresponding running times for each
method. Our mesh refinement achieved a higher CLIP sim-
ilarity compared to previous methods, while also demon-
strating faster refinement speeds.

4.4. Ablation Study
We conduct comprehensive ablation studies to substantiate
the effectiveness of each design element within our work-
flow, showing the importance of each component in the gen-
eration of high-quality 3D meshes.

Mutil-view images condition. In comparison to the
single-image condition, the multi-view images generated by
the 2D diffusion model offer enhanced information about
the object, which is advantageous for generating unseen
parts of 3D meshes. By incorporating camera poses into
the image feature extractor, our model can better differenti-
ate embeddings from various views of the object, ultimately
leading to more accurate 3D shape generation. In the ab-

(b) w/o PF, w/o Re-Laplace

(d) w/ PF, w/ Re-Laplace(c) w/ PF, w/o Re-Laplace

(a) Input mesh

Figure 10. Ablation Study of the normal-based geometry refine-
ment. We demonstrate the enhancement of our Poisson Fusion(PF)
and Relative Laplace(Re-Laplace) module.

sence of camera pose information, the model is prone to
producing 3D geometries with incorrect orientations. Un-
like CLAY [63], which employs a cost volume that inte-
grates camera pose information before feeding it into their
diffusion model, which requires precise camera poses for
accurate back projection. To demonstrate the superiority of
our design in the context of multi-view images with camera
pose injection, we conducted a comparison on our selected
subset, which evaluated by the metrics of Chamfer Distance
(CD) and Intersection over Union (IoU). As shown in Ta-
ble 4, our approach achieved the best performance.

Regularizations During Mesh Optimization. Our pro-
posed regularization terms eliminate the global distortions
introduced in the detail enhancement process by normal sta-
ble diffusion, constraint the vertices towards the proximity
of the coarse mesh, avoiding the mesh shrink introduced by
the shape independent local smoothness thereby enabling
a robust optimization process. As shown in Figure 10, di-
rectly refining the mesh without Poisson Fusion (PF) and
Relative Laplace regularization (R-Laplace) results in an
oddly sharp head due to global bias from normal stable
diffusion. Although Poisson Fusion corrects this bias, the
shape still shrinks. Replacing Original Laplace regulariza-
tion with R-Laplace leading to a more reasonable shape.

5. Conclusion and Discussion

We present CraftsMan3D, a pioneering framework for the
creation of high-fidelity 3D meshes that mimics the mod-
eling process of a craftsman, all within a mere 30 seconds.
Our approach begins with the generation of a coarse geom-
etry, followed by a refinement phase that enhances surface
details. Despite our method’s capability to produce high-
quality 3D meshes, the controllability of the Latent Set Dif-
fusion model warrants further investigation, and the gener-
ation of texture for 3D meshes presents a promising avenue
for future research.
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